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17.1 Introduction

There is a growing appreciation of the importance of quantum mechanics and in
particular of quantum information science both for understanding the nature of
the world in which we live and in the development of new technologies for
communication and imaging. It is in this spirit that this chapter is written. The
chapter deals with structured light fields, especially fields that carry orbital angular
momentum (OAM), and their application to communication systems.

The topic of structured light fields in the quantum domain is intimately related
to the topic of quantum imaging [1]. Quantum imaging is a discipline that studies
quantum aspects of image formation and that uses quantum properties of light to
produce images. Imaging techniques inherently require the ability to encode
massive amounts of information in a light field. The quantum aspects of optical
images can therefore be a key resource for quantum information and communi-
cation systems.

In this chapter we will review several examples of the quantum properties of
structured light field. In broad concept, there are two sorts of quantum states that
appear in our examples. One sort is a “single-photon” state, a state in which it is
known that there is one and only one photon present in the field of interest. Such a
state shows strong quantum properties because, for example, if you send such a
beam onto a beamsplitter, the photon will emerge in one of the two output ports
but not half and half in both. The other sort of quantum state of interest in this
chapter is an entangled state of two photons. In fact, the concept of entanglement
is one of the great mysteries of quantum mechanics. The term entanglement and
the first explicit description of this phenomenon were introduced by Schr€odinger
in 1935 [2]. Here is quote from his paper:

“When two systems, of which we know the states by their respective
representatives, enter into temporary physical interaction due to known forces
between them, and when after a time of mutual influence the systems separate
again, then they can no longer be described in the same way as before, viz. by
endowing each of them with a representative of its own. I would not call that one
but rather the characteristic trait of quantum mechanics, the one that enforces its
entire departure from classical lines of thought.”

This concept of entanglement leads to what today is often called “quantum
weirdness,” a term that arises from the seemingly paradoxical effects that can
occur in an entangled system. Entanglement has, for instance, played a key role in
compelling laboratory demonstrations [3, 4] of the nonlocality of quantum phe-
nomena. However, this weirdness has in fact turned into an asset. This entangle-
ment weirdness leads to effects such as quantum teleportation and certain forms of
quantum communication with guaranteed security. One of the easiest ways to
produce quantum entanglement uses nonlinear optical methods, and it is these
methods that therefore give the field of photonics a special and elevated position in
the arena of quantum technologies.

The concept of entanglement generation as applied to light fields can be
visualized using the drawing shown in . Fig. 17.1. Here a laser beam at frequency
ωp excites a second-order nonlinear optical crystal, whose nonlinear response can
be characterized in terms of its second-order susceptibility χ(2). Occasionally, a
pump photon can be absorbed and generates two lower-frequency photons of
frequencies ωs and ωi, a process known as spontaneous parametric
downconversion (SPDC) [5–7]. It can be shown that the rate at which photon
pairs are created is proportional to the product [χ(2)]2L2Ip, where L is the length of
the nonlinear crystal and Ip is the intensity of the pump laser.

By conservation of energy, the condition ωp ¼ ωs þ ωi must be satisfied, as
illustrated in part (b) of the figure, furthermore these two new photons are
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generated at the same position (i.e., position correlated). However, photon
momentum must also be conserved in this generation process, as illustrated in
part (c) of the figure, and hence the two new photons are generated with opposite
transverse momentum components (i.e., momentum anti correlated). It is these
simultaneous conditions on position and momentum that lead to the paradox of
Einstein et al. [8] and the concept of quantum entanglement [2].

The photons created by SPDC form entangled pairs, and in fact these photons
can be entangled simultaneously in more than one pair of degrees of freedom. The
possible types of entanglement that are often studied are
• position and transverse momentum
• angular position and orbital angular momentum
• time and energy
• polarization in different measurement bases.

Examples of the first two types of entanglement will be presented later in this
chapter. Here we present a brief discussion of the other two types of entanglement.

By time-energy entanglement, one means that if one measures, for example,
the energy of the signal photon, one is able to predict with certainty that the energy
of the idler photon will be given by ℏωi ¼ ℏωp � ℏωs: However, if one instead
chooses to measure the moment of time at which the signal photon is emitted, one
will always find that the idler photon is emitted at exactly the same moment. It
seems that the product of uncertainty in tightness in the correlation of energies
multiplied the uncertainty in the correlation of times can be arbitrarily small and
certainly smaller than the value 1

2 ℏ that one might have envisaged from the naive
application of uncertainty relations [9, 10]. The situation is the essence of entan-
glement: the resolution of this seeming paradox is that a measurement that one
performs on the signal photon results in a restriction of our ability to predict the
properties of the idler photon, even if that idler photon is arbitrarily distant from

ω ω

ω

(a)

(b)

(c)

. Fig. 17.1 (a) Schematic illustration of the process of spontaneous parametric
downconversion (SPDC). A laser beam excites a second-order (w(2)) nonlinear optical crystal,
leading to the generation of pairs of photons conventionally known as signal and idler
photons. This process must obey the conservation of both energy (b) and momentum (c).
These conditions lead to quantum correlations known as entanglement between the signal
and idler photons, as discussed further in the text
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the signal photon measurement location. This nonlocality which applies to
entangled systems leads to the phrase “spooky action at a distance.”

Polarization entanglement can be similarly described. Under certain
circumstances [6], each of the photons emitted by SPDC will be unpolarized,
that is a complete statistical mixture of two orthogonal polarization states. How-
ever, for any one particular measurement the polarization of the signal photon will
be found to have a defined value; one says that the measurement process projects
the polarization state unto one of the polarization eigenstates. Furthermore, one
finds that the idler photon will always be projected onto a polarization state that is
orthogonal to that of the first photon (due to the conservation of angular momen-
tum in the down conversion process). This type of entanglement is conveniently
described in terms of the Bell states, which have played a key role in the under-
standing of many of the conceptual foundations of quantum mechanics. Details
can be found in the excellent textbook of Gerry and Knight [11].

17.2 How Much Information Can One Photon Carry?

In classical optical telecommunication systems, many photons are required to
transmit one bit of information. But it can be interesting to turn this question
around and ask it differently: How much information can be carried by a single
photon? Perhaps surprising to some is that research conducted over the last decade
shows that there is no fundamental limit to the amount of information that can be
carried by a single photon.

We start this section by giving a specific example of the ability to transfer many
bits of information for each photon; this example will be developed in greater
depth in the following sections. Laboratory procedures now exist for switching
between single-photon states in any one of the Laguerre–Gaussian modes
(Eq. (17.3)) of light using, for example, liquid crystal-based spatial light
modulators [12] or a digital micromirror devices (DMD) [13]. It is crucial to recall
that the Laguerre–Gaussian modes constitute an infinite set of basis functions.
Thus, to the extent that one can perform OAM encoding and decoding with high
efficiency, there is no limit to the amount of information that can be carried by a
single photon.

The ability to encode more than one bit per photon is, of course, not restricted
to the Laguerre–Gaussian light beams. More generally, the transverse degree of
freedom of the light field offers a means to carry and manipulate quantum
information. An example of multi-bit information transfer relating to imaging is
provided in an experiment performed by Broadbent et al. [14]. A schematic of this
experiment is shown in . Fig. 17.2. Part (a) of the figure shows a multiplexed
hologram of objects A and B. By saying that the hologram is multiplexed, we mean
that different write-beam directions are used to form the interference fringes for
each object. Part (b) of the figure shows the read-out stage. It makes use of
entangled photons created by parametric downconversion in a BiBO crystal.
One of these photons falls onto the trigger detector, which heralds the presence
of the photon in the other arm. This photon falls onto an object in its arm, which
could be either object A or B. This photon is diffracted from the hologram into the
path of either detector A or B, depending on which object is placed in this arm. In
this manner, one can determine with high reliability which object is located in this
arm, even though only one photon is used to make this determination. Quantita-
tive results are presented in the paper. It is shown that the likelihood of a
misidentification (that is, for example, that the photon is detected by detector B
when in fact object A is present) is less than 1 %.

The experiment just described shows that one can discriminate between two
objects using single-photon illumination. A subsequent experiment [15]
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demonstrated the ability to discriminate among four objects, again using only
single-photon illumination. For this experiment a “quantum ghost-imaging”
protocol [16] is used. The setup is shown schematically in . Fig. 17.3. Spatially
entangled photons are again created by the process of parametric downconversion.
One of these photons illuminates one of the four test objects (only two are
displayed in the diagram to avoid clutter) and the other falls onto a multiplexed
hologram, where it is diffracted into one of four output ports. Coincidence events
between the reference detector R and one of the detectors A, B, etc. are recorded. In
this figure, DM denotes a dichroic mirror for blocking the pump laser and IF is an
interference filter with a 10 nm bandwidth, centered at 727.6 nm.

The results of this experiment are shown in . Fig. 17.4. Note that input object
a produces counts predominantly in detector A, and similarly for the other three
object-detector combinations. The data are displayed using two different normali-
zation conventions. In part (a), data for each object-detector combination are
normalized by the maximum coincidence count for the corresponding object. In
part (b), the T/A ratio is calculated by dividing the total coincidences by the
accidental coincidences for each object-detector combination. Part (c) of the figure
shows the four test objects. These results show that one can reliably discriminate
among four objects even when they are illuminated with weak light at a single
photon level. However, in this experiment the detection efficiency was low, and
thus more than one photon needed to illuminate the object in order to make an
unambiguous determination. In fact, for the sort of simple, multiplexed hologram
used in this experiment the maximum detection efficiency (that is, assuming
lossless optical elements and unit quantum efficiency detectors) is equal to 1/N
(where N is the number of objects). However, there seems to be no reason in
principle [17] why a hologram could not be designed to give a maximum detection
efficiency of unity.

. Fig. 17.2 Configuration of the “single-photon imaging” experiment of Broadbent et al. [14]
described in the text. Part (a) shows the procedure for writing a multiplexed hologram, and part

(b) shows the read-out stage, which operates at the single-photon level. The TCPSC is a time-
correlated single-photon counter
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We note that this sort of ghost imaging relies upon correlations between
photon pairs. If detector R registers a photon, we know with certainly that this
photon possessed the transverse mode structure given by the transmission func-
tion of the object in its path. Since this detected photon is entangled with the
photon in the other arm, this detected photon must therefore acquire the same
conjugate mode structure, and thus be diffracted by the hologram into a specific
output port.

Ar+  laser ( λ  = 363.8 nm)
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. Fig. 17.3 Configuration of an experiment to demonstrate the discrimination among four
different objects at the single-photon level, as described by Malik et al. [15]

0

0.5

1

N
or

m
. c

oi
n.

a
b

c
d

A
B

C
D

Detector
Object

0

50

T
/A

 ra
tio
 

a
b

c
d

A
B

C
D

Detector
Object

(b)(a)

a b c d

(c)

. Fig. 17.4 Results of the single-photon ghost imaging experiment described in Fig. 17.3, which can distinguish between four different
(non-overlapping) objects [15]
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17.3 Light Beams that Carry Orbital Angular Momentum

We turn now to another example of a structured light field, namely one carrying
orbital angular momentum, which displays interesting quantum properties that
can lead to important applications. First, we consider a light field of the form

Eðr, tÞ ¼ uðx, yÞei‘ϕeiðkz�ωtÞ (17.1)

Here u(x, y) is some function of the transverse coordinates x and y, ‘ is a positive
or negative integer, k ¼ ω=c is the propagation constant, z is the longitudinal
coordinate, and ω is the angular frequency. We assume propagation through
vacuum. It is well known that such a field carries angular momentum of amount
‘ℏ per photon [18]. For this reason, ‘ is often referred to as the OAM quantum
number or OAM mode index. This contribution to the angular momentum is
referred to as orbital angular momentum (OAM), distinguishing it from spin
angular momentum, which is associated with circular polarization of a light
field. These two contributions are additive, and in the paraxial limit considered
here independent of each other.

We can understand why the field given by Eq. (17.1) carries angular momen-
tum with the help of the sketch in part (a) of . Fig. 17.5. We see that such a field
possesses a wavefront structure in the form of a helix, and that the phase at each
point advances in the azimuthal direction at a rate proportional to the value of
l. One might well imagine that a small particle placed in such a beam would
experience a radiation pressure in the direction of phasefront normal and hence a
force with an azimuthal component that induces the object to begin to rotate
around the beam axis, and in fact this is just what has been observed experimen-
tally [19, 20].

Equation (17.1) shows that the a light field will carry OAM for any transverse
mode function u(x, y). However, some specific mode functions are especially
important in the utilization of structured light fields. One such example is that
of the Laguerre–Gaussian modes, and we will now briefly explore their properties.

The paraxial approximation to the wave equation ð∇2 � ∂2
=∂t2ÞEðx, y, zÞ ¼ 0

gives us the paraxial wave equation, which is written in the cartesian coordinate
system as

∂2

∂x2
þ ∂2

∂y2
þ 2ik

∂
∂z

 !
Eðx, y, zÞ ¼ 0: (17.2)

The paraxial wave equation is satisfied by the Laguerre–Gaussian modes, a family
of orthogonal modes that have a well-defined orbital angular momentum. The
field amplitude, in cylindrical coordinates, LGp

l(ρ, ϕ, z) of a normalized Laguerre–
Gaussian mode is given by

G‘
pðρ,ϕ, zÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p!

πðj‘j þ pÞ!

s
1

wðzÞ

ffiffiffi
2

p
ρ

wðzÞ
� �j‘j

L‘p
2ρ2

w2ðzÞ
� �

exp � ρ2

w2ðzÞ
� �

�exp � ik2ρ2z

2ðz2 þ z2RÞ
� �

exp ið2pþ j‘j þ 1Þtan�1 z

zR

� �� �
e�i‘ϕ,

(17.3)

where k is the wave-vector magnitude of the field, zR the Rayleigh range, w(z) the
radius of the beam at z, ‘ is the azimuthal quantum number, and p is the radial
quantum number. Lp

l is the associated Laguerre polynomial.
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Some methods for the production of beams that carry OAM are sketched in
. Fig. 17.5. The use of a spiral phase plate is shown in part (a) [19]. Another
important method for generating OAM light beams (part b) is to impress a
specially designed computer-generated hologram (CGH) taking the form of a
forked diffraction grating [12, 20–23] or a digital micromirror device (DMD)
[13]. If a beam with nearly plane wave fronts, such as a Gaussian laser beam, is
made to fall onto such a CGH, the diffracted light will acquire the desired form of a
beam carrying OAM. Another means to form beams carrying OAM is through the
use of a device known as a q-plate [24, 25]. This device is a birefringent phase plate
in which the orientation of the birefringent axes varies uniformly as a function of
azimuthal position around the axis of the plate. Such a device acts as a spin angular
momentum to OAM converter, that is, the OAM carried by the output beam
depends on the polarization state of the input beam. A q-plate can thus serve as a
quantum interface between polarization-encoded quantum light states and
OAM-encoded quantum light states.

. Fig. 17.5 Two methods of producing a light beam that carries orbital angular momentum. (a ) The conceptually simplest way to form a beam
carrying OAM is to pass a plane wave beam through a spiral phase plate, an optical element whose thickness increases linearly with the azimuthal
angle. After transmission through such an element, a incident plane wave is transformed into a light beam with helical phasefronts. The height of
the phase step controls the azimuthal index ‘ of the transmitted beam. (b ) Alternatively, one can replace the phase plate with its holographic
equivalent with a phase or amplitude structure in the form of a pitchfork as shown. The first-order diffracted beam will have helical phasefronts
with an azimuthal index given by the number of dislocations in the pitchfork. These holograms are conveniently created by using a spatial light
modulator. (c ) Examples of some OAM beams produced by these approaches
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17.4 Fundamental Quantum Studies of Structured
Light Beams

In . Sect. 17.1 of this chapter we noted that the process of spontaneous
parametric downconversion can lead to entanglement in several different degrees
of freedom, including position-momentum [26], time-energy [9, 10], polarization
[3, 4], and superpositions of OAM modes [27] or explicitly angle-OAM [28]. In
this section we provide a brief account of work aimed at studying these various
types of entanglement.

In Einstein, Podolski, and Rosen’s (EPR’s) classic paper [8], they argued
against the completeness of quantum mechanics. Their argument was based on
the situation of two particles that were strongly correlated both in position and
momentum. Later, David Bohm [29] restated this argument in terms of two
particles entangled in their spin (or polarization), and it was this spin-version of
the EPR paradox that was treated by John Bell in devising his celebrated Bell
inequalities. In the ensuing decades, most subsequent work [3, 4] has concentrated
on the polarization of the EPR paradox. In 1990 Rarity and Tapster [30] extended
the Bell violation to one based on measurement of phase and momentum. Howell
et al. [26] later performed an experimental investigation in which they studied the
original (i.e., Einstein et al. [8]) position-momentum version of the EPR paradox.
Some of their results are summarized in. Fig. 17.6. Their experimental procedure
is as follows. Photons entangled in position and momentum were created by type-
II parametric downconversion in a BBO nonlinear crystal, and the two photons
were separated by a polarizing beamsplitter (PBS) and traveled over separate paths.
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. Fig. 17.6 Laboratory setups (left) and measured conditional count rates (right) for a laboratory demonstration of the EPR effect for position and
transverse momentum variables. The notation P(x2 j x1) means that probability of measuring one photon at position x1 conditioned on the other
photon being detected at position x1, and analogously for P( p2 j p1). The measured conditional uncertainty product is 0:1ℏ, which violates the
Heisenberg uncertainty relation for independent particles [26]
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Either the birthplace (i.e., position) of each photon or its transverse momentum
could be determined by placing a slit followed by an area detector either in a focal
plane of the crystal or in its far field, respectively. Coincidence counts between
the two detectors were measured, and the conditional count rates associated
with position and momentum are shown in the graphs on the right-hand side
of the figure. The measured conditional uncertainty product is found to be
ðΔx2Þx1ðΔp2Þp1 ¼ 0:1ℏ, which is � five times smaller than which might be

expected for the uncertainty principle as applied to independent particles.
There has also been considerable interest in studies of time-energy entangle-

ment. For example, Ali-Khan et al. [10] have developed a protocol for quantum
key distribution (QKD) that can encode as much as ten bits of information onto a
single photon. In a separate study, Jha et al. [10] have studied time-energy
entanglement controlled by a geometrical (Berry) phase on the Poincare sphere
instead of by using a dynamical phase. The ability to manipulate entanglement by
means of a geometrical phase could have important consequences for quantum
information technology, because polarization controllers can be much more stable
than translation stages needed to actively control optical path lengths.

We next turn to a description of angle-OAM entanglement. We first note that
angle and OAM form a Fourier transform pair [22, 31]:

A‘ ¼ 1

2π

ðπ
�π

ψðϕÞexpð�i‘ϕÞdϕ (17.4)

ψðϕÞ ¼
X‘¼1

‘¼�1
A‘ exp ði‘ϕÞ (17.5)

where A‘ is the amplitude a OAM state ‘ and where ψ(ϕ) represents the azimuthal
dependence of the complex beam amplitude. One might well expect this result
based on classical reasoning. However, Jha et al. [32] showed theoretically that a
similar Fourier relation holds between the photons of an entangled photon pair
produced by a down-conversion source. They also experimentally demonstrated
the characteristic OAM sideband structure that this Fourier relationship implies
(. Fig. 17.7).

In a related experiment, Jha et al. [33] studied the correlations between the
OAM values of two entangled photons after each had passed through separated
double-slit apertures. Strong, non-classical, correlations were observed in the
resulting interference pattern. These authors also showed that under their experi-
mental conditions the visibility of this interference pattern was numerically equal
to the concurrence of the two-photon state, a measure of the degree of entangle-
ment between the two photons. A measured visibility of between 85 and 92 %
quantifies the nonclassical entanglement of the photons produced by their
two-photon source.

In still another related experiment, Leach et al. [28] performed an experiment
that is the direct analog of the Einstein–Podolsky–Rosen (EPR) gedankenexperi-
ment, but in the angle-OAM degrees of freedom. Part of the motivation for this
study is that, unlike the continuous and unbounded variables in position-
momentum entanglement considered by EPR, angular position is a periodic
variable leading to a discrete OAM spectrum. As such, the analysis of EPR for
angles involves subtleties similar to the issue of the existence of photon-number
photon-phase uncertainty relation [34]. The details of this experiment are
presented in . Fig. 17.8.

There has also been great recent interest in harnessing the radial modes of
Laguerre–Gaussian (LG) beams in addition to the azimuthal modes that we have
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primarily discussed up to now. One reason for this interest is to increase the
information capacity of a light beam of a given restricted diameter. We note that
the LG modes of Eq. (17.3) depend on two indices, the azimuthal index ‘ and the
radial index p. But there are also further subtleties involved in exploiting the radial
distribution, related to the fact that the radial coordinate ρ ranges from 0 to 1,
unlike the azimuthal coordinate ϕ, which ranges from 0 to 2π. Recently, Karimi
et al. [35] presented a theoretical analysis of the operator nature of the radial
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degree of freedom. Moreover, Karimi et al. [36] have studied the dependence of
Hong–Ou–Mandel interference on the transverse structure of the interfering
photons.

17.5 Secure Quantum Communication with More
than One Bit Per Photon

We now turn to an application for the OAM of light in the field of cryptography
and secure communication. To put this application topic in context, we first review
the use of a one-time pad in cryptography (Shannon [37]). We consider the
situation in which one party, A (or Alice), wants to communicate securely to
another party, B (or Bob). We assume that by pre-arrangement the two parties
share the same string of random binary digits known as the key, that no one else
has access to this key, and that this string of digits is at least as long as the message
that Alice wants to send. Alice encodes her message by first placing it into a binary
format and then performing a binary add of the i-th digit in her message with the
i-th digit in the one-time pad. This encoded message is then sent over a public
channel. It is provably true that this message contains no useful information except
to someone who has possession of the secret key. Bob then decodes the message by
performing a binary add with his copy of the key, thus obtaining the original
message that Alice sent.

A difficulty with implementing the one-time pad method is the distribution of
the secret key between Alice and Bob. This is especially difficult if the two parties
are not and cannot be in the same place, where the key can simply be handed from
one to the other. When not in the same place, a procedure proposed by Bennet and
Brassard in 1984 (know as the BB-84 protocol) can be used to distribute the key in
an entirely secure manner. In brief (some of the details are provided below), Alice
sends the key one element at a time, and each digit is encoded in the quantum state
of a single photon. If an eavesdropper (Eve) intercepts and measures this photon
and then tried to send an exact replacement photon of it, she will certainly fail,
because the laws of quantum mechanics prohibit her from determining full
knowledge of the quantum state of a photon in a single measurement. The
impossibility of doing so results from the celebrated “no-cloning” theorem of
quantum mechanics [38]. Secure communication through use of the BB-84 proto-
col of quantum key distribution (QKD) is now a commercial reality (see, for
example the website 7 http://www.idquantique.com).

Work in which the present authors have participated involves extending the
BB-84 protocol so that more than one bit of information can be carried by each
photon. Such a procedure may be used to increase the secure bit rate of a quantum
communication system. To achieve the goal of transmitting more than one bit per
photon, we encode information in the transverse degree of freedom of the light
field. For the transverse degree of freedom one can choose any complete set of
orthonormal modes. In keeping with the context of this chapter we consider
encoding in OAM modes such as Laguerre–Gaussian (LG) modes. In the original
QKD proposal of Bennett and Brassard, information is encoded in the polarization
degree of freedom of an individual photon. As a result, only one bit of information
could be impressed onto each photon. In contrast, when using OAM, there is no
limit to how many bits of information can be impressed onto a single photon, as
the LG modes span an infinite-dimensional state space. As mentioned above, one
motivation for doing this is that rate of data transmission is thereby increased.
Another more subtle motivation is that the security of the protocol can be
increased by encoding information within a higher-dimensional state space.

The system that we envisage is illustrated in broad scope in . Fig. 17.9. It
consists of a sender, Alice, and a receiver, Bob. Alice impresses information onto
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the transverse degree of freedom of individual photons through the use of a spatial
light modulator (SLM). Bob then randomly guesses which basis (OAM or angle)
Alice might be using and makes a measurement of the quantum state of the
received photon in this basis. The procedure for ensuring the security of the
transmission is a generalization of that of the BB84 protocol and is described in
the review of Gisin and Thew [39]. In the remainder of the present section we
describe in more detail our laboratory procedure and present some
laboratory data.

The BB84 QKD protocol entails Alice sending each photon in a randomly
chosen basis. At least two mutually unbiased bases (MUBs) must be used. Certain
advantages accrue from using more than two MUBs. It is known that the maxi-
mum number Bmax of MUBs is related to the dimension D of the state space by
Bmax ¼ Dþ 1. In our laboratory investigations we use the minimum number of
MUBs, B ¼ 2. We choose this value for convenience and to maximize our data
transmission rate. Our two basis sets are illustrated in . Fig. 17.10. One basis is
comprised of the LG states themselves. The other basis is composed of a linear
combination of the LG states of the form

Alice

APDs

Bob

mode sorter

classical
channel

mode
preparer

laser

slm1

sl
m

3

sl
m

2

free-space
quantum
channel

. Fig. 17.9 System schematic of the baseline QKD protocol of Mirhosseini et al. [41]. A sender
(A or Alice) impresses information onto an individual photon through use of a spatial light
modulator (SLM). This photon is then sent to the receiver (B or Bob) through a free-space link,
where it may experience degradation by means of atmospheric turbulence. The receiver then
determines the quantum state of this photon

Laguerre-Gaussian Basis 

 0     1    2          12    13   14         25    26    27 

 0     1    2          12    13   14         25    26    27 

“Angular” Basis: linear combination of LG states (mutually unbiased with respect to LG)

. . . . . . . .

. . . . . . . .

. Fig. 17.10 The LG basis (top) and a linear combination of the LG states (bottom) that constitutes the angular basis (AB). The information is
encoded by launching individual photons that have been prepared in one of these modes [40]
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From this expression we obtain the states shown in the lower row of the figure,
which is referred to as the angular basis (AB).

An example of the implementation of this protocol is shown in. Fig. 17.11. In
this example, Alice is attempting to send the string of numbers 13, 3, 2, 3, 15,
14, 16, 8, 24, 26 to Bob. For each transmitted photon, Alice chooses randomly
between the LG basis and the AB basis. Also, for each transmitted photon Bob
chooses randomly between the OAM and AB bases. After the transmission of the
entire data train is complete, Alice and Bob publicly disclose the basis they used for
each measurement. If they used different bases (which occurs on average half of
the time), they discard the results of that measurement. The remaining data string
is known as the sifted data, and this data should contain no errors. Any error in
this data string could be the result of measurement errors or to the presence of an
eavesdropper. For reasons of extreme caution, one must ascribe all errors to the
presence of an eavesdropper. To test for errors, Alice and Bob sacrifice some
fraction of their data for public comparison. If errors are detected, they conclude
that an eavesdropper is present and take appropriate corrective measures.

We have implemented this BB84-type protocol in our laboratory. . Fig-

ure 17.11 shows how Alice forms each of the basis states. Basically, she programs
a spatial light modulator (SLM) to convert an individual photon in a plane-wave
state into one of the desired LG or AB modes [41]. The upper row shows the LG
basis and the lower row shows the angular AB basis. The panel on the left shows
representative examples of the pattern displayed on the SLM. The panels on the
right show examples of the field distribution written onto the light field. These
frames show actual laboratory results, although read out with intense classical
light, not with single photons (. Fig. 17.12).

Special considerations apply to the configuration of the receiver, or Bob. He is
presented with a single photon and needs to determine its quantum state. Thus, he
is allowed to perform only one measurement to determine in which of a large
number of quantum states the received photon resides. This sorting task has
eluded the scientific community until very recently, when Berkhout et al. [40]
demonstrated a means for performing this task. Their approach is illustrated in
. Fig. 17.13. The key element of this approach is the ability to map the azimuthal
phase distribution of an incident mode onto a linear phase distribution at the

Alice  LG:13 LG:3  AB:2 AB:3 AB:15 AB:14 LG:16 LG:8 AB:24 LG:26 

Bob     LG    LG   LG    AB   LG    AB    LG    AB    AB   AB 

Result   13     3   15    3    15    14    16    17    24   10

Sifted Key  13 3 3 14 16 24 … in principle contains no errors 

. Fig. 17.11 Example of a proposed implementation of a generalized BB84 protocol in a high-dimensional (27-dimensions as illustrated) state
space [40]
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output of the device. Of course, a linear phase ramp in one cartesian dimension is
simply a wavefront tilt, and leads to a shift in the position of the beam in the far
field. It turns out that one can determine analytically the form of the phase
function that needs to be applied to a light field to perform this mapping. In
their original implementation of this sorting procedure, Berkhout et al. [42]
applied this phase mapping through the use of an SLM. In a more recent work
they have fabricated refractive elements that perform this same function but with
much higher conversion efficiency than those based on diffraction from an SLM.

Some laboratory results validating the performance of this sorter are shown in
. Fig. 17.14. These results demonstrate our ability to discriminate among various
quantum states in either the LG or angular basis. In each basis we include only four
basis states. This limitation is due to the number of photodetectors (APDs)
available to us. We see no fundamental limit to our ability to distinguish among
all of the states in our protocol, 27 in this particular situation. We see that there is a
small amount of crosstalk among the various channels.

Laguerre- 
Gauss 

Angular 

. Fig. 17.12 Illustration of the procedure for producing light fields in one of the Laguerre–Gaussian or angular basis states, shown for the case
of a five-state bases (D ¼ 5). The dotted circles in the panels on the right denote the aperture of the transmitting optics [Unpublished laboratory
results of M.N. O’Sullivan]

. Fig. 17.13 The angular-to-linear reformatter (Glasgow mode-sorter). (top) Physical layout of the reformatter. (bottom) Some results showing
the performance of the reformatter used as a sorter. Note that the vertical position of the light beam at the output of the sorter depends on
the OAM value ‘ of the beam (Unpublished data from the Boyd laboratory)
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Using the procedures described here, we recently performed a realistic demon-
stration of quantum key distribution based on OAM encoding [43]. Our experi-
mental setup is shown in . Fig. 17.15 and is composed of the various components
described above. Alice prepares state to be sent by first carving out pulses from a
highly attenuated He-Ne laser through the use of an AOM. Then spatial mode
information is impressed on these pulses with a digital micromirror device
(DMD). Bob’s mode sorter and fan-out elements map the OAM modes and the
ANG modes onto separated spots that are collected by an array of fibers and sent
to individual APD detectors.

Some of the results of this demonstration are shown in . Fig. 17.16. The top
row (left) shows the string of numbers sent by Alice and the top row right shows
the string of numbers received by Bob. Note that the strings are not identical; due
to various transmission and detection errors, some of the symbols are not detected
as transmitted. In the figure errors are marked in red and are underlined. As a test
of their system, Alice and Bob could publicly disclose these results to determine the
fractional error rate. However, in an operating system, Alice and Bob would want
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. Fig. 17.14 Laboratory data demonstrating Bob’s ability to discriminate among various quantum states in either the LG or angular basis
through the use of the Glasgow mode sorter. Note that discrimination is good but not perfect; there is cross-talk among the channels (Unpublished
data from the Boyd laboratory)

. Fig. 17.15 Experimental setup of Mirhosseini et al. [43]. This system uses the OAM and angle
bases to implement a QKD system. Alice encodes information in either the OAM or angle basis
(chosen randomly), and Bob performs a measurement after making a further random choice of
basis. Data obtained when they use different bases is later discarded, in a process known as
sifting. If there is no eavesdropper, there should in concept be no errors in this data. Alice and
Bob can test for the presence of an eavesdropper by the following procedure. They openly
disclose a subset of this data, and check to see if any errors are present. The presence of errors
suggests the presence of an eavesdropper
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to sacrifice only a small fraction of their data to test system security. Alice and Bob
therefore employ an error correction algorithm and a method known as privacy
amplification (which shortens the length of their shared string) to decrease the
number of errors in the shared strings. They end up with a shared key that
contains essentially no errors. (For this reason we show the string constituting
the shared key only once.) As a graphic demonstration of the use of this procedure,
we also show how it could be used for the secure transmission of an image. The
image is separated into pixels which are then digitized and transmitted using the
secret key shared by Alice and Bob. An eavesdropper who intercepted the signal
would see only the noisy pattern that is also displayed.

. Fig. 17.16 Experimental results from the study of Mirhosseini et al. [43] (a ) Example of a random sifted key from the experiment. The spatial
modes are mapped to numbers between 0 and 6, and errors are marked in red and are underlined. Each symbol is converted into a three digit
binary number first and the binary key is randomized before the error-correction. Privacy amplification minimizes Eve’s information by shortening
the key length. (b ) Alice encrypts the secret message (in this case an image of an ancient Persian tablet) using the shared secure key and Bob
subsequently decrypts it
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17.6 Summary and Conclusions

In this chapter we have presented a review of the quantum mechanical properties
of spatially structured light fields, paying special attention to light fields that carry
orbital angular momentum (OAM). We have considered both the conceptual
understanding of the quantum features of these light fields and the use of these
quantum features for applications. We describe how to produce spatially entangled
light fields by means of the nonlinear optical process of spontaneous parametric
downconversion. We address the question of how much information can be
encoded onto a single photon. As an example, we review a recent experiment
that demonstrated the ability to discriminate among four target objects using only
one photon for illumination. We also present a description of the concept of the
OAM of light, and we describe means to generate and detect OAM. We then
present a brief survey of some recent studies of the fundamental quantum
properties of structured light beams. Much of this work is aimed at studying the
nature of entanglement for the complementary variables of angular position and
OAM. Finally, as a real-world application, we describe a secure communication
system based on quantum key distribution (QKD). This key distribution system
makes use of encoding information in the OAMmodes of light and hence is able to
transmit more than one bit of information per photon.
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